LESSON 6

Using Groups and Lists

Objectives:

- Build a finite element model that includes element properties and boundary conditions.
- Use lists to identify parts of the model with specified attributes.
- Explore the Group Display mode.

Model Description:

In this exercise you will import or construct a portion of a fairing. Shown below is a drawing of the assembled structure and its dimensions. Use curves and surfaces to define the fairing geometry. The finite element model will consist of 2-dimensional elements with 1-dimensional elements applied at various edges of the geometry. The 1-dimensional elements will represent stiffeners for the structure.

Figure 6-1

Table 6-1

Analysis Code	P3/FEA	
Element Types	Bar2 (horizontal fairing edges) Quad4 (fairing surface)	
Material Name	Alum_1	Alum_2
Modulus of Elasticity, E (psi)	1.05E7	1.18E7
Poisson's Ratio, v	0.33	0.33
Density, ρ (lb/in3)	2.6E-4	2.4E-4
Model Thickness	1.5 - Y/160.	

Suggested Exercise Steps:

Model Temperature Distribution

■ Create a new database and name it **fairing.db**. Select **Default** for the *Tolerance* and **MSC/NASTRAN** for the *Analysis Code*.

200.-(150./160.)X

- Either import the Geometry and Finite Element model from the neutral file **fairing.out** or create the model using Figure 6-1.
- Create the points and curves that represent the outline of the fairing.

```
Point 1 (XYZ method): [30,0,0];
curve 1 (XYZ method): vector length=<0,120,0>;
origin=[50,40,0]
curve 2 (point method): between points 1 and 2.
```

Sweep Curves 1 & 2 through 360° angles about the centerline of the fairing in 4 steps using the Surface Revolve method.

a) Seed the circumference of the fairing at the upper edge with 9 nodes per quarter of the circumference.

b) Create non-uniform seed distributions along the vertical edge of the fairing represented by Curve 1 &2..

Curve 1,
$$L2 = 10$$
, $L1 = 7$

Curve 2,
$$L2 = 7$$
, $L1 = 4$

- c) Create the mesh for the surface using Quad4 elements.
- d) Create Bar2 elements along the circumference representing the edges of the upper cylinder of the lower cone.
- Create a group containing only the finite element model. Name the group FEM. Post only that group to the viewport.
- Create the materials for the fairing. Materials Alum_1 and Alum_2 will be applied to the top (cylindrical) and bottom (tapered) portions of the fairing respectively. Use Table 15-1 to define the Material Properties.
- Define fields that represent the varying **thickness** and **temperature** distribution. Use Table 6-1 to define the fields.
- Create the element properties which include the material definitions and the varying thickness. Use the names **Prop_1** and **Prop_2** for the element property names.
- Define the model's varying temperature distribution. Use the name **Temperature** for the temperature set name.
- Use Lists and Groups to display the Quad elements that have the following attributes:

Material:Alum_1 (MATRL.1)

Thickness:> 0.98

Temperature: > 230.0

Create a new group named **Common_Quads** and add these elements to that group. Plot the temperature contours on these elements. Reset Graphics.

- Post only the group named FEM and change the render style to hidden line (the bars will disappear).
- Create a group containing only the bar elements. Name the group **BARS**.
- Change to group display mode and modify the FEM and BARS render style as follows:

Group	Render Style	Shade Color	Entity Labels
FEM	Hidden Line	Cyan	Off
BARS	Wireframe	Yellow	Off

Change the render style for the group BARS to Wireframe/Accurate.

Exercise Procedure:

File/New Database...

1. Create a new database and name it **fairing.db**. Select **Default** for the *Tolerance* and **MSC/NASTRAN** for the *Analysis Code*.

New Database Name OK New Model Preference Tolerance Analysis Code: MSC/NASTRAN OK

2. Either import the Geometry and Finite Element model from the neutral file **fairing.out** or create the model using Figure 6-1.

If you are going to import the Geometry and Finite Element model of the fairing, perform the following import procedure, then skip to step 11. If you are going to build the fairing model, skip to step **3.**

File/Import	
Object:	Model
Source:	Neutral
Import File:	fairing.out
Apply	
Respond Yes when asked to continu	e on the Import Summary form.
To see what was just imported, go to Member List. Both geometry (point elements (nodes and elements) default_group. Click on OK to close elements were imported, select the F Show/Element/Attributes , highlight Scroll down through the spreadshee elements are in the model.	ts, curves and surfaces) and finite have been imported into the se the form. To see what kinds of Finite Elements radio button, then that all the elements and hit Apply .
Now create a group containing only	the finite element model.
Group/Create	
New Group Name:	FEM
Group Contents:	Add All FEM
Apply	
Go to Step 11.	
3. Create the points and curves the fairing.	that represent the outline of
Point 1 [30,0,0];	
Curve 1: vector length=<0,120	0,0>; origin=[50,40,0]
Curve 2: between points 1 and	12.
Geometry	
Action:	Create

Object:

Method:

Point

XYZ

Point Coordinate List

[30, 0, 0]

Apply

Now you will create curves that represent the profile of the fairing. They will be swept to create the fairing's surface.

Action:	Create
Object:	Curve
Method:	XYZ
Vector Coordinate List	<0, 120, 0>
Origin Coordinate List	[50, 40, 0]

Annly	
Appry	
11.	

Next change the *Method* option menu to **Point**.

Action:	Create
Object:	Curve
Method:	Point
Starting Point List	Point 1
Ending Point List	Point 2

Apply

Your model should appear as follows:

4. Create the fairing from an assembly of quarter circular surfaces defined by revolving curves 1 and 2 about the fairing's vertical center line.

Action:

Create

Object:

Surface

Method:

Revolve

Surface Type:

■ PATRAN 2 Convention

Axis:

Coord 0.2

Total Angle:

360

Surface per Curve:

4

Curve List:

Curve 1, 2

Apply

Change the view Angle to 30 0 0

Viewing/Angles...

Angles:

30, 0, 0

Apply

Cancel

Your model should appear as follows:

Create a finite element mesh that has the following 5. attributes:

Along the circumferential edges create 4 node Quad elements every

Finite Elements

Action: Create Object: Mesh Seed Type: Uniform **Number of Elements** Number =Surface 1:4.2

Apply

Curve List:

In the vertical direction (y-direction), define a smoothly transitioning mesh density, the elements along the top of the cylinder are 2.5 times as large as those along the bottom edge (tapered end) of the fairing.

Action:

Create

Object:

Mesh Seed

Type:

One Way Bias

♦ L1 and L2

L1 =

7

L2 =

10

Curve List:

Curve 1

Apply

Action:

Create

Object:

Mesh Seed

Type:

One Way Bias

♦ L1 and L2

L1 =

4

L2 =

7

Curve List:

Curve 2

Apply

Now that the seed has been created you will mesh the model.

Action:

Create

Object:

Mesh

Type: Surface

Element Topology: Quad 4

Surface List: Select All Surfaces

Apply

Your model should appear as follows:

Mesh the horizontal (circumferential) edges of each surface with twonoded bar elements.

Action: Create

Object: Mesh

Type: Curve

Element Topology: Bar 2

Curve List: See the excerpt below

Select the surface edges shown below. A hint on selecting the appropriate edges. Set the view to the default, then use click and drag picking technique.

Also you may want to Erase all FEM in **Display/Plot/Erase...** to make the selection easier. When you are done remember to replot the FEM.

Apply

Equivalence the Finite Elements to reduce the number of elements by eliminating duplicate nodes.

Action: Equivalence
Object: All
Type: Tolerance Cube

Apply

6. Create a group containing only the finite element model. Name the group FEM. Post only that group to the viewport

Group/Create...

New Group Name: FEM

■ Unpost All Other Groups

Group Contents: Add All FEM

Apply

Cancel

7. Create the materials for the fairing. Materials Alum_1 and Alum_2 will be applied to the top (cylindrical) and bottom (tapered) portions of the fairing respectively. Use Table 6-1 to define the Material Properties.

♦ Materials	
Action:	Create
Object:	Isotropic
Method:	Manual Input
Material Name	alum_1
Input Properties	
Constitutive Model:	Linear Elastic
Elastic Modulus=	1.05E7
Poisson's Ratio=	0.33
Density=	2.6E-4
Apply	
Cancel	
Apply	
Action:	Create
Object:	Isotropic
Method:	Manual Input
Material Name:	alum_2
Input Properties	
Constitutive Model:	Linear Elastic
Elastic Modulus=	1.18E7
Poisson's Ratio=	0.33
Density=	2.4E-4
Apply	
Cancel	

Apply

8. Define fields that represent the varying thickness and temperature distribution. Use Table 6-1 to define the fields.

♦ Fields	
Action:	Create
Object:	Spatial
Method:	PCL Function
Field Name:	thickness
Scalar Function:	1.5-'Y/160
Apply	
Action:	Create
Object:	Spatial
Method:	PCL Function
Field Name:	temperature
Scalar Function:	200(150./160.)*'X
Apply	

9. Create the element properties which include the material definitions and the varying thickness. Use the names **Prop_1** and **Prop_2** for the element property names.

Click on the **Properties** radio button in the *Main Form*. Using the information on Table 6-1 create element properties **Prop_1** and **Prop_2** for the top (cylindrical) and bottom (tapered) portions of the fairing respectively. Apply the element properties to the Quad elements. Use the **thickness** field you defined earlier to represent the varying shell thickness and materials **Alum_1** and **Alum_2** for the top and bottom portions of the model respectively.

Properties	
Action:	Create

Dimension: <u>2D</u> Shell Type: Property Set Name: prop_1 Options: Homogeneous **Standard Formulation Input Properties...** m:alum_1 Material Name Thickness f:thickness OK Elements 1:504 Select Members Add Apply

Action:	Create
Dimension:	2D
Type:	Shell
Property Set Name	prop_2
Options:	Homogeneous
	Standard Formulation
Input Properties	
Material Name	m:alum_2
Thickness	f:thickness
OK	
Select Members	Elements 505:792

Load/BCs	
Action:	Create
Object:	Temperature
Type:	Nodal
New Set Name	temp
Input Data	
Temperature	f:temperature
OK	
Select Application Region	
Geometry Filter	♦ FEM
Select Nodes	Select All Nodes
Add	
OK	
Apply	
Turn off the temperature labels	
Display/Load/BC/El. Props	
Loads/BCs	☐ Temperature
Apply	

Add

11. Use Lists and Groups to filter then group the quad elements that have the following attributes:

Material:Alum_	1 (MATRL.1	if you imported	the model)

Thickness:> 0.98

Tools/List/Create...

Method:

Temperature: > 230.0

Add to *List A* the elements which have the Alum_1 (MATRL.1) material as one of their attributes.

Model:	FEM
Object:	Element
Method:	Attribute
Attribute	Material
Existing Materials	alum_1
Target List	♦ A
Apply	
Cancel	
Next, you will define <i>List B</i> to inchave a <i>thickness greater than 0.98</i> .	
Properties	
♦ Properties Action:	Show
• •	
Action:	Show
Action: Existing Properties	Show Thickness
Action: Existing Properties Display Method	Show Thickness Scalar Plot
Action: Existing Properties Display Method Select Groups	Show Thickness Scalar Plot
Action: Existing Properties Display Method Select Groups	Show Thickness Scalar Plot
Action: Existing Properties Display Method Select Groups Apply	Show Thickness Scalar Plot

Attribute

Next, you will intersect Lists A and B and replace the contents of List A with the elements found in the intersection.

Tools/List/Boolean...

On the form that appears click on the intersect icon. The form should appear as follows:

To transfer the contents of List C to List A, click on the **Replace A** button in the *Boolean List* form.

List A currently satisfies the first two of our three conditions: Quad elements associated with material **Alum_1** (*MATRL.1*) and having thickness > 0.98.

Now you will perform a final classification of the elements. You will isolate those elements that satisfy the third condition of applied temperature load > 230.0.

♦ Load/BCs				
Action:	Plot Contours			
Object:	Temperature			
If you have imported the model from the neutral file, you need to switch the current load case to Load_Case.1 to be able to select the temperature boundary condition.				
Existing Sets	temp (TEMPN.1.1)			
Select Data Variable	Temperature			
Select Groups	FEM			
Apply				
Tools/List/Create				
Model:	FEM			
Object:	Element			
Method:	Attribute			
Attribute	Fringe Value			
Groups With Fringe Table	FEM			
$F \supset \Box$	230.0			
Target List	♦ B			
Click on the Clear button in the <i>List B</i> form.				
Apply				
Cancel				

In the last portion of this step, you will intersect Lists A and B again to create List C. This will provide you with a list of elements that satisfy all 3 of the conditions. You will then put the contents of List C into the **common_quads** group.

Tools/List/Boolean...

Click on the *intersect* icon.

Add To Group...

Group Name

common_quads

Apply

Cancel

Finally click on **Group** in the *Main Form*.

Group/Post...

Select Groups to Post

common_quads

Apply

In the *Load/Boundary Conditions* form rerender the temperature contours and Your model should appear as follows:

On the *Load/Boundary Conditions* form, click on the **Reset Graphics** button.

12. Create two groups by properties containing **prop_1** and **prop_2** respectively. In this step, you will be introduced to Group display mode concept. You will practice how to change the display attributes of a group of entities that represents a collection of different entity types (i.e. quad and bar elements). A major usage of this feature is demonstrated through displaying the same set of entities placed in two different groups in different render styles.

Group/Create...

New Group Name

Group Contents:

Apply

prop1_group

Add Entity Selection

Now to add the contents to the group you must create a list.

Tools/List/Create...

Model: FEM

Object:	Element			
Method:	Attribute			
Attribute	Property Set			
Existing Property Sets	prop_1			
Apply				
Cancel				
Next on the List A form select:				
Add To Group				
Group Name	prop1_group			
Apply				
Cancel				
	next group prop2_group and select set. Be sure to clear List A before ate form.			
Change the view to Isometric Vi	ew 1.			
Now render each group with diff	erent render styles.			
Display/Entity Color/Label/Render				
Entity Coloring and Labeling	Group			
Target Group(s):	prop1_group			
Render Style:	Hidden Line			
Apply				
Cancel				
Now that MSC/PATRAN is in group display mode, you can modify each group's display properties individually.				
Target Group(s):	prop2_group			
Render Style:	Wireframe			

C1	1	0	1
$\mathbf{N}nc$	เกค	\boldsymbol{U}	dor

Yellow

Apply

Display each group separately using **Group/Post...** Note how the same set of entities can be displayed in different render styles. This feature proves to be extremely useful in the results post-processing. An example would be to display different results on the same set of finite elements, such as stress and temperature.

This figure shows both groups posted at once.

File/Quit