LESSON 6

Using Groups and Lists

Objectives:

- Build a finite element model that includes element properties and boundary conditions.
- Use lists to identify parts of the model with specified attributes.
- Explore the Group Display mode.

LESSON 6

Model Description:

In this exercise you will import or construct a portion of a fairing. Shown below is a drawing of the assembled structure and its dimensions. Use curves and surfaces to define the fairing geometry. The finite element model will consist of 2-dimensional elements with 1 -dimensional elements applied at various edges of the geometry. The 1-dimensional elements will represent stiffeners for the structure.

Figure 6-1

Table 6-1

Analysis Code
Element Types

Material Name
Modulus of Elasticity, E (psi)
Poisson's Ratio, v
Density, $\rho(\mathrm{lb} / \mathrm{in} 3)$
Model Thickness
Model Temperature Distribution

P3/FEA
Bar2 (horizontal fairing edges) Quad4 (fairing surface)

Alum_1 Alum_2
$1.05 \mathrm{E} 7 \quad 1.18 \mathrm{E} 7$
$0.33 \quad 0.33$
$2.6 \mathrm{E}-4 \quad 2.4 \mathrm{E}-4$
200.-(150./160.)X

Suggested Exercise Steps:

- Create a new database and name it fairing.db. Select Default for the Tolerance and MSC/NASTRAN for the Analysis Code.
- Either import the Geometry and Finite Element model from the neutral file fairing. out or create the model using Figure 6-1.
- Create the points and curves that represent the outline of the fairing.

Point 1 (XYZ method): [30,0,0];
curve 1 (XYZ method): vector length=<0,120,0>; origin $=[50,40,0]$
curve 2 (point method): between points 1 and 2 .

- Sweep Curves $1 \& 2$ through 360° angles about the centerline of the fairing in 4 steps using the Surface Revolve method.
a) Seed the circumference of the fairing at the upper edge with 9 nodes per quarter of the circumference.

b) Create non-uniform seed distributions along the vertical edge of the fairing represented by Curve $1 \& 2$..

Curve 1, L2 $=10, \mathrm{~L} 1=7$
Curve 2, L2 $=7, \mathrm{~L} 1=4$
c) Create the mesh for the surface using Quad4 elements.
d) Create Bar2 elements along the circumference representing the edges of the upper cylinder of the lower cone.

- Create a group containing only the finite element model. Name the group FEM. Post only that group to the viewport.
- Create the materials for the fairing. Materials Alum_1 and Alum_2 will be applied to the top (cylindrical) and bottom (tapered) portions of the fairing respectively. Use Table 151 to define the Material Properties.
- Define fields that represent the varying thickness and temperature distribution. Use Table 6-1 to define the fields.
- Create the element properties which include the material definitions and the varying thickness. Use the names Prop_1 and Prop_2 for the element property names.
- Define the model's varying temperature distribution. Use the name Temperature for the temperature set name.
- Use Lists and Groups to display the Quad elements that have the following attributes:

Material:Alum_1 (MATRL.1)
Thickness:> 0.98
Temperature: > 230.0

Create a new group named Common_Quads and add these elements to that group. Plot the temperature contours on these elements. Reset Graphics.

- Post only the group named FEM and change the render style to hidden line (the bars will disappear).
- Create a group containing only the bar elements. Name the group BARS.
- Change to group display mode and modify the FEM and BARS render style as follows:

Group	Render Style	Shade Color	Entity Labels
FEM	Hidden Line	Cyan	Off
BARS	Wireframe	Yellow	Off

- Change the render style for the group BARS to Wireframe/Accurate.

Exercise Procedure:

1. Create a new database and name it fairing.db. Select Default for the Tolerance and MSC/NASTRAN for the Analysis Code.

File/New Database...
New Database Name

> fairing

OK

New Model Preference

Tolerance
Analysis Code:

Default
MSC/NASTRAN

OK

2. Either import the Geometry and Finite Element model from the neutral file fairing. out or create the model using Figure 6-1.

If you are going to import the Geometry and Finite Element model of the fairing, perform the following import procedure, then skip to step 11. If you are going to build the fairing model, skip to step 3.

File/Import...

Object:
Source:
Import File:

Model
Neutral
fairing.out

Apply

Respond Yes when asked to continue on the Import Summary form.
To see what was just imported, go to Group/Modify and look at the Member List. Both geometry (points, curves and surfaces) and finite elements (nodes and elements) have been imported into the default_group. Click on OK to close the form. To see what kinds of elements were imported, select the Finite Elements radio button, then Show/Element/Attributes, highlight all the elements and hit Apply. Scroll down through the spreadsheet to see that both Quad4 and Bar2 elements are in the model.

Now create a group containing only the finite element model.

Group/Create...

New Group Name:

FEM
Add All FEM

Apply

Go to Step 11.
3. Create the points and curves that represent the outline of the fairing.

Point 1 [30,0,0];
Curve 1: vector length $=\langle 0,120,0\rangle$; origin $=[50,40,0]$
Curve 2: between points 1 and 2 .

Geometry

Action:
Create

Object:
Method:
Point Coordinate List

Point
XYZ
$[\mathbf{3 0 , 0 , 0]}$

Apply

Now you will create curves that represent the profile of the fairing. They will be swept to create the fairing's surface.

Action:

Create
Curve
XYZ
$\mathbf{0 , 1 2 0 , 0 >}$
$[50,40,0]$

Apply

Next change the Method option menu to Point.
Action:
Object:
Method:
Starting Point List
Ending Point List

Create
Curve
Point
Point 1
Point 2

Apply

Your model should appear as follows:

4. Create the fairing from an assembly of quarter circular surfaces defined by revolving curves 1 and 2 about the fairing's vertical center line.

Action:

Create
Surface
Revolve

Surface Type:
Axis:
PATRAN 2 Convention
Coord 0.2
Total Angle:
360
Surface per Curve:

Curve List:
Curve 1, 2

Apply

Change the view Angle to 3000
Viewing/Angles...
Angles:

$$
\mathbf{3 0 , 0 , 0}
$$

Apply

Cancel

Your model should appear as follows:

5. Create a finite element mesh that has the following attributes:

Along the circumferential edges create 4 node Quad elements every 10°

Finite Elements

Action: \square
Object:
Type:
Uniform

Number of Elements

Number $=$
Curve List:

9
Surface 1:4.2

Apply

In the vertical direction (y-direction), define a smoothly transitioning mesh density, the elements along the top of the cylinder are 2.5 times as large as those along the bottom edge (tapered end) of the fairing.

Action:
Create
Object:
Mesh Seed
Type:
One Way Bias

L1 and L2

$L 1=$
$L 2=$
Curve List:
7

Apply

Action:

Object:
Type:

L 1 and L2

$L 1=$
$L 2=$
Curve List:

Apply

Now that the seed has been created you will mesh the model.

Action:	Create
Object:	Mesh

Type:
Element Topology:
Surface List:

Surface
Quad 4

Select All Surfaces

Apply

Your model should appear as follows:

Mesh the horizontal (circumferential) edges of each surface with twonoded bar elements.

Action:	Create
Object:	Mesh
Type:	Curve
Element Topology:	Bar 2
Curve List:	See the excerpt below

Select the surface edges shown below. A hint on selecting the appropriate edges. Set the view to the default, then use click and drag picking technique.

Also you may want to Erase all FEM in Display/Plot/Erase... to make the selection easier. When you are done remember to replot the FEM.

Apply

Equivalence the Finite Elements to reduce the number of elements by eliminating duplicate nodes.

Action:
Equivalence

Object:
Type:

Tolerance Cube

Apply

6. Create a group containing only the finite element model.

Name the group FEM. Post only that group to the viewport

Group/Create...

New Group Name:

$$
\overline{\text { FEM }}
$$

Unpost All Other Groups

Group Contents:

Add All FEM

Apply

Cancel
7. Create the materials for the fairing. Materials Alum_1 and Alum_2 will be applied to the top (cylindrical) and bottom (tapered) portions of the fairing respectively. Use Table 61 to define the Material Properties.

Materials

Action:
Object:
Method:
Material Name
Input Propertier
Constitutive Mod
Elastic Modulu
Poisson's Ratio
Density=
Apply
Cancel
Apply

Action:
Object:
Method:
Material Name:

Input Properties...

Constitutive Model:
Elastic Modulus=
Poisson's Ratio=
Density=
Apply
Cancel

Create
Isotropic
Manual Input
alum_1

Linear Elastic
1.05 E 7
$\mathbf{0 . 3 3}$
$\mathbf{2 . 6 E - 4}$

Create
Isotropic
Manual Input
alum_2

Linear Elastic
1.18 E 7
$\mathbf{0 . 3 3}$
$2.4 \mathrm{E}-4$

Apply

8. Define fields that represent the varying thickness and temperature distribution. Use Table 6-1 to define the fields.

Fields

Action:
Object:
Method:
Field Name:
Scalar Function:

Create
Spatial
PCL Function
thickness
$1.5-'$ Y/160

Apply

Action:
Object:
Method:
Field Name:
Scalar Function:

Create
Spatial
PCL Function
temperature
$200 .-(150 . / 160 .)^{*} ’ \mathbf{X}$

Apply

9. Create the element properties which include the material definitions and the varying thickness. Use the names Prop_1 and Prop_2 for the element property names.

Click on the Properties radio button in the Main Form. Using the information on Table 6-1 create element properties Prop_1 and Prop_2 for the top (cylindrical) and bottom (tapered) portions of the fairing respectively. Apply the element properties to the Quad elements. Use the thickness field you defined earlier to represent the varying shell thickness and materials Alum_1 and Alum_2 for the top and bottom portions of the model respectively.

Properties

Action:

Create

Dimension:
Type:
Property Set Name:
Options:

2D
Shell
prop_1

Homogeneous
Standard Formulation
Input Properties...
Material Name
Thickness
OK

Select Members
m:alum_1
f:thickness

Elements 1:504
Add

Apply

Action:
Dimension:
Type:
Property Set Name
Options:

Create
2D
Shell
prop_2
Homogeneous

Standard Formulation
Input Properties...
Material Name
Thickness
m:alum_2
f:thickness

Select Members

Add
Apply

10. Define the model's varying temperature distribution. Use the name temp for the temperature set name.

< Load/BCs

Action:
Object:
Type:
New Set Name

Create
Temperature
Nodal
temp

Input Data...

Temperature

f:temperature

OK
Select Application Region...
Geometry Filter
Select Nodes
Add
OK
Apply

Turn off the temperature labels
Display/Load/BC/El. Props...
Loads/BCs

Apply

Cancel
11. Use Lists and Groups to filter then group the quad elements that have the following attributes:

Material:Alum_1 (MATRL. 1 if you imported the model)
Thickness:> 0.98
Temperature: > 230.0
Add to List A the elements which have the Alum_1 (MATRL.1) material as one of their attributes.

Tools/List/Create...
Model:
FEM

Object:
Method:
Element

Attribute
Existing Materials
Target List

Attribute
Material
alum_1
$<\mathbf{A}$

Apply
Cancel

Next, you will define List B to include only the Quad elements that have a thickness greater than 0.98.

Properties

Action:
Existing Properties
Display Method
Select Groups

Show
Thickness
Scalar Plot
FEM

Apply

Tools/List/Create...
Model:
Object:
Method:

FEM
Element
Attribute

Attribute
Groups With Fringe Table

Target List

Fringe Value
FEM
0.98
< \mathbf{B}

Apply

Cancel

Next, you will intersect Lists A and B and replace the contents of List A with the elements found in the intersection.

Tools/List/Boolean...

On the form that appears click on the intersect icon. The form should appear as follows:

To transfer the contents of List C to List A, click on the Replace A button in the Boolean List form.

List A currently satisfies the first two of our three conditions: Quad elements associated with material Alum_1 (MATRL.1) and having thickness > 0.98.

LESSON 6

Now you will perform a final classification of the elements. You will isolate those elements that satisfy the third condition of applied temperature load >230.0.

$<$ Load/BCs

Action:
Plot Contours
Object:

Temperature

If you have imported the model from the neutral file, you need to switch the current load case to Load_Case. 1 to be able to select the temperature boundary condition.

Existing Sets
Select Data Variable
Select Groups
temp (TEMPN.1.1)
Temperature
FEM

Tools/List/Create...

Model:	FEM
Object:	Element
Method:	Attribute
Attribute	Fringe Value
Groups With Fringe Table	FEM
$F \rightarrow \square$	230.0
Target List	< \mathbf{B}

Click on the Clear button in the List B form.

Apply
Cancel

In the last portion of this step, you will intersect Lists A and B again to create List C. This will provide you with a list of elements that satisfy all 3 of the conditions. You will then put the contents of List C into the common_quads group.

Tools/List/Boolean...

Click on the intersect icon.

Add To Group...

Group Name
common_quads

Apply

Cancel

Finally click on Group in the Main Form.
Group/Post...
Select Groups to Post
common_quads
Apply

In the Load/Boundary Conditions form rerender the temperature contours and Your model should appear as follows:

On the Load/Boundary Conditions form, click on the Reset Graphics button.
12. Create two groups by properties containing prop_1 and prop_2 respectively. In this step, you will be introduced to Group display mode concept. You will practice how to change the display attributes of a group of entities that represents a collection of different entity types (i.e. quad and bar elements). A major usage of this feature is demonstrated through displaying the same set of entities placed in two different groups in different render styles.

Group/Create...

New Group Name
Group Contents:

> prop1_group

Add Entity Selection

Apply

Now to add the contents to the group you must create a list.
Tools/List/Create...
Model:
FEM

Object:
Method:
Attribute
Existing Property Sets

Element
Attribute
Property Set
prop_1

Apply

Cancel
Next on the List A form select:

Add To Group...

Group Name
prop1_group

Apply

Cancel
Repeat this process. Label the next group prop2_group and select prop_2 from the Existing Property Set. Be sure to clear List A before you select Apply on the List Create form.

Change the view to Isometric View 1.

Now render each group with different render styles.
Display/Entity Color/Label/Render...
Entity Coloring and Labeling
Target Group(s):
Render Style:

Group

$$
\begin{array}{|l|}
\hline \text { prop1_group } \\
\hline
\end{array}
$$

Apply
Cancel

Now that MSC/PATRAN is in group display mode, you can modify each group's display properties individually.

Target Group(s):
Render Style:
prop2_group
Wireframe

Shade Color:

Yellow

Apply

Display each group separately using Group/Post... Note how the same set of entities can be displayed in different render styles. This feature proves to be extremely useful in the results post-processing. An example would be to display different results on the same set of finite elements, such as stress and temperature.

This figure shows both groups posted at once.

File/Quit

