"Women in Science & IT"

Am SCC arbeiten viele weibliche Talente in der Wissenschaft und Informationstechnologie. Wie sieht ihr Berufsalltag aus, was sind die Arbeitsschwerpunkte und welche Interessen haben sie? Hier lernen Sie einige unserer "Women in Science & IT" kennen.

Elnaz Azmi

Porträtbild von Elnaz Azmi
Elnaz Azmi

... forscht als Promotionsstudentin zu Datenanalyse und Optimierung von Simulationen aus den Umweltwissenschaften.

Ich arbeite als Promotionsstudentin in der Abteilung Data Analytics, Access and Application (D3A) des SCC. Mein Forschungsschwerpunkt liegt auf der Datenanalyse und der Optimierung von Simulationen hoher räumlicher und zeitlicher Auflösung aus den Umweltwissenschaften. Für die Optimierung verwende ich unter anderem Methoden des maschinellen Lernens.

Darüber hinaus bin ich im Projekt VFORWaTer beteiligt, in welchem eine virtuelle Forschungsumgebung für die Wasser- und terrestrische Umweltforschung entwickelt wird. Ziel der Forschungsumgebung ist es den Zugang zu hydrologischen Daten, deren Aufbereitung und deren Publikation zu vereinfachen.

Meine Forschungsinteressen sind Data Mining, maschinelles Lernen und Softwareentwicklung.

Kontakt: Elnaz Azmi

Larissa Beinhorn

Porträtfoto Larissa Beinhorn
Larissa Beinhorn

... beantwortet Fragen rund um die Erstellung von Webseiten des KIT.

Am KIT gibt es rund 900 Webauftritte, die von den jeweiligen Instituten und Verwaltungsabteilungen gepflegt werden. Dafür wird das Content-Management-System OpenText verwendet, das ein einfaches Erstellen und Bearbeiten von Webseiten ohne Programmierkenntnisse in einem einheitlichen KIT-Design ermöglicht.

In einem Team von drei Personen berate ich die Redakteur*innen dabei, ihre Ideen in OpenText umzusetzen und beantworte Fragen, die von der Einrichtung eines Webservers bis zur optisch ansprechenden Gestaltung des Webauftritts reichen.

Daneben arbeite ich in Projekten mit dem Ziel, Geschäftsprozesse zu digitalisieren und unterschiedliche Softwaresysteme miteinander zu integrieren. So arbeitet das KIT derzeit an einem Forschungsinformationssystem, das Daten zu Forschungsprojekten, Publikationen und Innovationen zusammenstellt, um diese an interne und externe Stellen zu berichten.

Kontakt: Larissa Beinhorn
 

Jennifer Buchmüller

Portraitbild von Jennifer Buchmüller
Jennifer Buchmüller

... leitet die Abteilung Supercomputing & Simulation, die den Hochleistungsrechner Karlsruhe HoreKa baut und betreibt.

Wir betreiben HoreKa für Forschende in ganz Deutschland.  Das ist ein Supercomputer, der eine Kapazität von knapp 150.000 leistungsstarken Laptops hat. Er wird eine Rechenleistung von 17 Petaflops erbringen – das entspricht rund 17 Billiarden Rechenoperationen pro Sekunde. In HoreKa haben wir, früher als viele andere, Technologie der allerneusten Generation verbaut und in Betrieb genommen.

Meine Abteilung Scientific Computing & Simulation unterstützt Forschende dabei, diese neuen Technologie zu bestmöglich zu nutzen. Zu den Hauptanwendungen am KIT zählen z.B. Klima- und Umweltsimulationen. Für Wettervorhersagen und Klimaforschung, aber auch für Modelle der Teilchenphysik, der Materialforschung oder Mobilitätsforschung, können wir mit dem neuen Hochleistungsrechner noch schnellere, effizientere und detailliertere Simulationen durchführen.

Kontakt: Dr. Jennifer Buchmüller

Sabrine Chelbi

Porträtbild von Sabrine Chelbi
Sabrine Chelbi

...forscht in der Helmholtz Metadata Collaboration Platform, die sich zum Ziel gesetzt hat, wissenschaftliche Daten besser verständlich zu machen.

Nach Abschluss meines Informatik-Masterstudiums am KIT bin ich in die Abteilung Data Exploitation Methods(DEM) eingetreten und arbeite seither in der Helmholtz Metadata Collaboration Platform (HMC). Das Ziel von HMC ist die Anreicherung von Daten mit standardisierten Metadaten, die für ihr Verständnis, ihr Auffinden und ihre Wiederverwendung unerlässlich sind. Diese Arbeit ist durch die große Menge an einzigartigen Forschungsdaten motiviert, die in den verschiedenen Helmholtz-Zentren erzeugt werden.

Die Abteilung DEM ist Teil der Plattform HMC und ich trage zum Team durch die Entwicklung und Implementierung von Basisdiensten bei, die die technische Grundlage von HMC bilden, z.B. Collection API.

Kontakt: Sabrine Chelbi

Charlotte Debus

Portraitfoto von Charlotte (Charlie) Debus
Charlotte Debus

... forscht als Helmholtz AI Consultant an Methoden der künstlichen Intelligenz für das Energiesystem.

Künstliche Intelligenz findet sich mittlerweile in vielen Bereichen unseres alltäglichen Lebens wieder: Sei es die Gesichtserkennung im Handy, der Sprachassistent zu Hause oder die Filmvorschläge bei Netflix. Aber auch für die Forschung haben diese Methoden in den letzten Jahren maßgeblich zu Innovation und wissenschaftlichen Durchbrüchen beigetragen.

Für die Umsetzung der Energiewende und die Entwicklung der Energiesysteme von morgen spielt Künstliche Intelligenz (KI) beispielsweise eine zentrale Rolle.
Im Rahmen von Helmholtz AI bieten wir Forschungsgruppen aus der gesamten Helmholtz-Gemeinschaft im Themenfeld „Energie“ die Möglichkeit, KI-Methoden in ihren Forschungsfragen zur Anwendung zu bringen. Wir beraten sie über mögliche Einsatzgebiete, helfen ihnen bei der Implementierung und Validierung der Algorithmen und bieten ihnen Zugang zu leistungsfähiger KI-Hardware am SCC.

Die Arbeit als AI Consultant bietet jeden Tag neue spannende Fragestellungen und Herausforderungen, denn das Gebiet der Energieforschung ist riesig: von der Vorhersage von elektrischer Last und der Sonneneinstrahlung für Photovoltaik-Anlagen bis hin zur Überwachung der Produktion von Solarzellen ist alles dabei. Und in all diesen Anwendungen kann KI helfen.

Kontakt: Dr. Charlotte Debus

Anis Farshian Abbasi

Porträtbild von Anis_Farshian Abbasi
Anis_Farshian Abbasi

... ist Doktorandin in der Abteilung Datenanalyse, Zugang und Anwendungen.

Die dreidimensionale Oberflächenrekonstruktion ist eines der Hauptprobleme der Computer Visualisierung. Sie hat eine Vielzahl wissenschaftlicher, technischer und industrieller Anwendungen, die von der Robotik und dem autonomen Fahren bis zur Medizin reichen. Traditionell wurde die 3D-Oberflächenrekonstruktion mit geometrischen Methoden angegangen. In jüngster Zeit haben Algorithmen des maschinellen Lernens aufgrund ihrer Leistungsstärke bei der Lösung verschiedener Probleme an Popularität gewonnen. Dies hat dazu geführt, dass eine Gruppe von Ansätzen, so genannte lernbasierte Methoden, für die 3D-Rekonstruktion entstanden ist.

Im Rahmen meiner Doktorarbeit beschäftige ich mich mit der Anwendung von lernbasierten 3D-Oberflächenrekonstruktionsverfahren bei wissenschaftlichen Problemen. Meine Forschungsinteressen umfassen Geometrieverarbeitung, maschinelles Lernen und deren Anwendungen in der Analyse von medizinischen und Fernerkundungsdaten.

KontaktAnis Farshian Abbasi

Sabine Grindler

Portraitfoto Sabine Grindler
Sabine Grindler

... unterstützt die Zusammenarbeit am KIT mit Groupware-Lösungen und zentralen Desktops.

Projekt- und Forschungsgruppen benötigen Groupware-Plattformen, um zuverlässig und effizient zusammenzuarbeiten. Eine solche Plattform bieten u.a. die KIT Teamseiten auf unseren SharePoint-Servern. Ich berate und unterstütze Forschende und Beschäftigte in der Administration zu den Anwendungsmöglichkeiten, wie Dokumenten- und Bildbibliotheken, Termin- und Aufgabenmanagement sowie einfache Workflows. Gemeinsam mit ihnen entwickle ich passende Lösungen. Zudem betreue ich den Remote Desktop Service, der seine Stärken hat, wenn es darum geht Standardsoftware plattform- und standortunabhängig auch über langsame Netze nutzbar zu machen.

Aber nicht nur der Service Support ist mir wichtig, ich setze mich auch aktiv für die Chancengleichheit am KIT ein.

Kontakt: Sabine Grindler

Germaine Götzelmann

Porträtbild von Germaine Götzelmann
Germaine Götzelmann          (Foto: Christina Stivali)

...betreibt Forschung & Entwicklung im Bereich Forschungsdatenmanagement und -analyse am KIT und promoviert an der TU Darmstadt in Computerphilologie.

Kleine geisteswissenschaftliche Fächer gewinnen in ihrer Forschung oft einzigartige und detailreiche Einblicke in faszinierende Ereignisse der Menschheitsgeschichte. Die Ergebnisse solcher Forschung gilt es, auch im Hinblick auf ihre Daten nachhaltig zu bewahren und digital nachnutzbar zu machen. Im sog. Informationsinfrastrukturprojekt des Sonderforschungsbereichs Episteme in Bewegung, wird diese Aufgabe im Rahmen eines facettenreichen interdisziplinären Verbundprojekts der Wissensgeschichte mit Pilotcharakter umgesetzt.

Als Geisteswissenschaftlerin und Informatikerin in ‘Personalunion’ steht für mich neben Forschung und Entwicklung im Bereich Forschungsdatenmanagement und -analyse auch der kommunikative Brückenschlag zwischen Geistes- und Informationswissenschaft im Zentrum meiner täglichen Projektarbeit. Im Rahmen meines Dissertationsprojekts bei Prof. Dr. Andrea Rapp an der TU Darmstadt (Computerphilologie) zeige ich überdies auf, wie sich quantitative Datenanalyse dazu nutzen lässt, neue Blickwinkel auf digitalisiertes kulturelles Erbe zu gewinnen, indem ich Algorithmen und Werkzeuge für Bildsegmentierung und Bildähnlichkeitssuche auf Buchillustrationen des 16. Jahrhunderts zur Anwendung bringe.

Kontakt: Germaine Götzelmann

Maren Hattebuhr

Porträtfoto von Maren Hattebuhr
Maren Hattebuhr

... promoviert im Projekt Computational And Mathematical Modeling Program - CAMMP.

Gibt es einen Klimawandel und ist er menschengemacht?

Ich entwickle Workshopmaterial für Schüler/innen, in dem sie angeleitet werden sich auf der Basis wissenschaftlicher Methoden und echter Daten eine eigene fundierte Meinung zu dieser Fragestellung zu bilden. Dieser gesellschaftlich und politisch höchst relevante und angespannte Kontext leitet Schüler/innen dazu an präzise Aussagen im Rahmen der Möglichkeiten der Mathematik zu treffen und ihre Aussagekraft zu erfahren.

Dazu werden statistische Datenanalysemethoden, wie die Zeitreihenanalyse sowie Hypothesentests genutzt. Weiterhin werden Schüler/innen mittels Kompartmentmodellen an die Grundlagen von Klimasimulationen herangeführt. Diese Forschungsarbeit fließt direkt in die Projekte CAMMP und Simulierte Welten ein.

Meine Forschungsinteressen sind Mathematische Modellierung, Statistik, Kompartmentmodelle, Klimawandel, Didaktik.

Kontakt: Maren Hattebuhr

Stephanie Hofmann

Porträtbild von Stephanie Hofmann
Stephanie Hofmann

... promoviert im Projekt Computational And Mathematical Modeling Program - CAMMP.

Mathematik anwenden und begreifbar machen, das ist es was ich als wünschenswertes Ziel für den Mathematikunterricht sehe. Daher habe ich mich nach meinem Staatsexamen Lehramt am KIT in den Fächern Mathematik und Physik für eine Promotion im Projekt CAMMP entschieden.

Im Zusammenhang mit diesem Projekt erstelle ich Workshops für Schülerinnen und Schüler in denen mathematische Probleme authentisch und realitätsnah behandelt werden. Konkret soll ein Workshop zum Thema Nachweis des Higgs Bosons entstehen. Hierbei wird eine schülergerechte statistische Analyse der Daten des Cern Experimentes durchgeführt um mit Hilfe eines Likelihood-Quotienten-Tests eine begründete Entscheidung über die Existenz des Higgs-Teilchens zu treffen. Ein weiterer Workshop entsteht zum Thema Wortvorhersagen am Smartphone, wobei das mathematische Problem mit Markov Ketten modelliert wird.

Meine Forschungsinteressen sind Text Mining, statistische Tests, Markov Ketten, Mathematische Modellierung.

Kontakt: Stephanie Hofmann

Jasmin Hörter

Portraitfoto von Jasmin Hörter
Jasmin Hörter

… leitet die Abteilung Scientific Computing & Mathematics.

In der Abteilung Scientific Computing & Mathematics treffen drei Bereiche aufeinander. In der interdisziplinären Forschungs­gruppe Computational Science and Mathematical Methods dreht sich alles um Modellierung und numerische Methoden­forschung. Sie vereint Forschende des SCC, des Instituts für Angewandte und Numerische Mathematik sowie externe Partner aus Industrie und Wissenschaft. Mit dem DKFZ entwickeln wir beispielsweise neue Methoden zur präziseren Abgrenzung von krebsartigem und gesundem Gewebe, um Strahlentherapien zielgerichteter und effizienter ausrichten zu können.

Experten unserer Simulation and Data Life Cycle Labs unterstützen Forschende, die auf unseren Super­computern rechnen. Sie helfen bei der Umsetzung ihrer Simulations­modelle und veranstalten Schulungen, um ihnen den Einstieg in das High Performance Computing zu erleichtern. 

Und für die Wissenschaft­lerinnen und Wissen­schaftler von morgen bieten wir mit CAMMP und Simulierte Welten Workshops und Projekttage. Interessierte Lehrkräfte können unsere Experten direkt an ihre Schule holen und dort spannende, reale Problem­stellungen mit Hilfe von mathe­matischer Model­lierung lösen.

Kontakt: Dr. Jasmin Hörter

Elena Huck

Porträtbild von Elena Huck
Elena Huck

… betreibt zusammen mit ihren Kolleginnen und Kollegen der Abteilung Netze und Telekommunikation das Datennetz KITnet.

Hocheffiziente und hochverfügbare Datennetze bilden die Grundlage für eine erfolgreiche Digitalisierung der Dienstleistungen und eine zeitgemäße Ausbildung der Studierenden mit dem dazu gehörenden Lehrangebot. Leistungsstarke Anbindungen an das Internet garantieren eine hohe Qualität der internationalen Präsenz des KIT mit gleichzeitig schneller Verfügbarkeit der weltweit verfügbaren Dokumente für Forschende und Studierende. 

Neben der Netzhardware wie Kupfer- und Glasfaserkabel, Router, Switches und WLAN-Komponenten betreibt sie Remote-Access-Lösungen für den Fernzugriff (VPN) und essentielle Basisdienste für den erfolgreichen Netzbetrieb (Firewall, DHCP). Zudem ist sie zentrale Ansprechperson für die Abteilung Informationssysteme für Organisation und betriebliche Ressourcen beim Betrieb des SAP-Systems, für das Facility Management bei der Umsetzung von VoIP-Lösungen und bei netzspezifischen Fragen externer Dienstleister. 

Zusammen mit ihren Kolleginnen und Kollegen sorgt Frau Huck für einen funktionierenden 7*24-Betrieb der Netz-Dienste.

Kontakt: Elena Huck
 

Reetu Elza Joseph

Porträtbild von Reetu Elza Joseph
Reetu Elza Joseph

... forscht auf dem Gebiet der Materialcharakterisierung mit Schwerpunkt auf Metadatenschemata für verschiedene Anwendungen.

Ich stamme aus Kerala in Indien, und Wissenschaft war schon immer meine Leidenschaft. Mit einem Bachelor in Elektrotechnik und einem Master in Materialwissenschaften habe ich mich während meiner Doktorarbeit am KIT auf die Überschneidung dieser beiden Bereiche konzentriert und die Photophysik der Upconversion untersucht.

In der Abteilung für Data Exploitation Methods (DEM) am SCC arbeite ich mit Forschenden verschiedener Institutionen im Rahmen des Projekts Integrated Model Driven Materials Characterization zusammen, um nachhaltige Lösungen für die Speicherung und gemeinsame Nutzung experimenteller Daten zu finden. Die FAIR-Prinzipien (Findable Accessible Interoperable Reproducible) sind besonders wichtig für meinen Arbeitsbereich, der sich auf die Entwicklung von Metadatenschemata für verschiedene Anwendungen konzentriert.

Kontakt: Dr. Reetu Elza Joseph

Birgit Junker

Porträtbild von Birgit Junker
Birgit Junker

… entwickelt und vermittelt IT-Serviceprozesse wie das Change- und Auftragsmanangement und ist Kommunikatorin darin.

Verlässliche IT-Services sind nötig, um die KIT-Angehörigen in Verwaltung, Lehre, Forschung und Entwicklung, zu unterstützen. Und wenn es in der IT mal nicht so läuft wie es sollte, ist es wichtig, zu wissen, wer zuständig ist, wer helfen kann, wer informiert werden muss. Dabei unterstützen uns die Prozesse und Werkzeuge im IT-Servicemanagement.

Im IT-Servicemanagement bin ich seit Gründung des KIT tätig und kann meine langjährige Erfahrung in der Anwendungsentwicklung und im IT-Support nutzen, um die Kommunikation zwischen den Kolleg*innen, aber auch zu den Anwender*innen zu verbessern. Dabei ist mir besonders die Kommunikation aus dem SCC heraus wichtig. Diese erfordert gute Kenntnisse über IT-spezifischen Zusammenhänge, aber auch soziale Kompetenz. Mit Fachwissen, sehr gutem Überblick und dem notwendigen Fingerspitzengefühl und Vermittlungsgeschick setze ich die „Brille der Anwender*innen auf“ und entlocke den Kolleg*innen Antworten auf deren Fragen. Das ist eine der Herausforderungen, die ich immer wieder gerne annehme.

Kontakt: Birgit Junker

Eileen Kühn

Porträtfoto Dr. Eileen Kühn
Eileen Kühn

... erforscht hybride Algorithmen im Bereich Quantum Machine Learning.

Die heutigen Quantencomputer gehören zu den sogenannten NISQ-Geräten, da sie nur eine geringe Anzahl an Qubits haben, die zudem noch sehr fehleranfällig sind. Trotzdem können auf dieser Basis bereits die Vorteile gegenüber klassischen Computern untersucht werden. Insbesondere der Einsatz hybrider Algorithmen, bei denen parametrisierbare Circuits für Quantencomputer durch klassische Optimierungsverfahren trainiert werden, sind vielversprechend.

Mein Team und ich untersuchen solche hybriden Algorithmen und kümmern uns nicht nur um praktische Implementierungen im Spannungsfeld des Quantum Machine Learnings, sondern auch um die Skalierbarkeit und Generalisierung für zukünftige Geräte und mögliche Anwendungsfälle.

Außerdem setze ich mich aktiv für die nachhaltige Entwicklung von Forschungssoftware und deren Bedeutung in der Wissenschaft ein.

Kontakt: Dr. Eileen Kühn
 

Sabine Lorenz

Porträtfoto Sabine Lorenz
Sabine Lorenz

… ermöglicht und organisiert Kommunikation und Datenaustausch über Einrichtungsgrenzen hinweg.

Erfolgreiche Teamarbeit in der Wissenschaft erfordert eine gute Kommunikation und Kooperation und dafür sind einfache Werkzeuge notwendig.

Neben der Kommunikation in Echtzeit spielt auch die asynchrone Kommunikation eine große Rolle. Dafür betreibe ich sowohl einen Mailinglistenserver für die Beschäftigten und Studierenden des KIT als auch einen Mailinglistendienst für deutsche Wissenschaftseinrichtungen im Auftrag des DFN-Vereins. Zudem unterstütze ich die Listeneigentümer bei der Administration Ihrer Mailinglisten, über die auch verschlüsselte E-Mails versandt werden können.

Für die gemeinsame Bearbeitung und den einfachen und flexiblen Austausch von Dokumenten über Hochschulgrenzen hinweg betreiben wir den Cloud-Dienst bwSync&Share , für dessen Koordination ich mitverantwortlich bin.

Kontakt: Sabine Lorenz
 

Haykuhi Musheghyan

Porträtbild von Haykuhi Musheghyan
Haykuhi Musheghyan

...arbeitet als Experimentvertreterin beim Grid Computing Centre Karlsruhe (GridKa).

GridKa unterstützt vier Haupt-LHC-Experimente (Alice, Atlas, CMS, LHCb). Es ist auch das deutsche regionale Grid-Rechenzentrum für Nicht-LHC-HEP-Experimente (Belle2, BaBar, Auger, Compass). Alle diese Experimente produzieren jedes Jahr Terabyte und/oder Petabyte von Daten, die sicher gespeichert werden sollen, und bei Bedarf zuverlässig und schnell verwendet werden können.

Ich arbeite als Vertreterin des ATLAS-Experiments bei GridKa. Meine Arbeit umfasst die Kommunikation zwischen GridKa und dem ATLAS-Experiment, die Koordination der Teilnahme von GridKa an ATLAS-spezifischen Tests von Diensten, die Verfolgung von Vorfällen und Problemen sowie die Zusammenarbeit mit GridKa-Experten. Ich bin ebenfalls noch für andere Dienstleistungen im LHC-Umfeld verantwortlich, nicht nur für ATLAS. Diese beinhaltet eine breite Palette von Aufgaben wie Administration, Wartung, Entwicklung, Test und Bereitstellung von Software.

KontaktDr. Haykuhi Musheghyan

Karin Schaefer

Porträtfoto Karin Schäfer
Karin Schaefer

… arbeitet in der Tape-Gruppe im Hardware- und Prozess-Monitoring.

Am SCC werden große Datenmengen in mehreren Tape Libraries mit Bandlaufwerken auf Magnetbändern (Tape) gespeichert. Hierfür stellt das SCC umfangreiche Backup- und Archivierungsdienste bereit. Bei den Daten handelt es sich einerseits um Forschungsdaten von Wissenschaftlerinnen und Wissenschaftlern und andererseits um verschiedenste Daten der KIT-Beschäftigten oder deren Rechner. Ich entwickle Computerprogramme und Grafiken, um sowohl die notwendige Hardware als auch den Prozess der Datenspeicherung zu überwachen und zu optimieren. Des Weiteren engagiere ich mich für die Kommunikation und Zusammenarbeit in der Tape-Gruppe. 

Am Arbeitgeber KIT schätze ich insbesondere die Unterstützung zur Vereinbarkeit von Beruf und Familie.

Kontakt: Karin Schaefer

Sarah Schönbrodt

Porträtfoto von Sarah Schönbrodt
Sarah Schönbrodt

... forscht als Promotionsstudentin im Bereich der Stoffdidaktik Mathematik.

Ich forsche als Promotionsstudentin im Bereich der Stoffdidaktik Mathematik in den Projekten CAMMP und Simulierte Welten. Genauer arbeite ich an der Entwicklung und Erprobung von innovativen Lehr- und Lernkonzepten für den mathematischen Modellierungsunterricht mit Schülerinnen und Schülern. Dazu entwickle ich digitale Lernmaterialien, die Schülerinnen und Schülern ein aktives Bearbeiten von realen und authentischen Problemstellungen aus Alltag, Forschung und Technik mithilfe von mathematischen Methoden und Computereinsatz erlauben.

Mein Forschungsinteresse liegt dabei insbesondere auf den Anwendungsfeldern Erneuerbare Energien und Maschinelles Lernen. Innermathematisch liegt mein Schwerpunkt im Bereich des Formulierens und Lösens von Optimierungsproblemen, die bei realen Fragestellungen auftauchen.

Kontakt: Sarah Schönbrodt

Gabriele Schramm

Porträtfoto Gabriele Schramm
Gabriele Schramm

… ist Teamplayerin im Thema KIT-Card und Mitarbeiterin im Projekt bwCard.

Die KIT-Card ist eine Chipkarte und dient u.a. als Ausweis für Studierende und Mitarbeitende. Damit mit der KIT-Card z.B. Türen geöffnet, Essen bezahlt oder Bücher ausgeliehen werden können, arbeiten mehrere Organisationseinheiten am KIT zusammen. 

Die Aufgaben im Team sind sehr vielseitig: Wir begleiten und optimieren alle Prozesse rund um den Lebenszyklus der KIT-Card, stellen die Technik und Software zur Produktion bereit oder passen diese an, betrachten Datenschutzaspekte, koordinieren die Produktion und die Ausgabe der Karten, stellen Informationen bereit und beantworten Nutzeranfragen.
    
Als eine der lokalen Koordinator*innen für das Projekt bwCard arbeite ich mit den neun baden-württembergischen Universitäten zusammen. Ein Ziel ist es, die eigene Chipkarte an allen Landesuniversitäten nutzen zu können. Der Aufbau einer bwCard-Produktionsgemeinschaft ist ebenfalls Teil des Projektes.

Kontakt: Gabriele Schramm

Pia Stammer

Porträtfoto von Pia Stammer
Pia Stammer

... erforscht als Promotionsstudentin Unsicherheiten in Dosisberechnungen für die Strahlentherapie.

Strahlentherapie ist eine der meist angewandten Behandlungsformen von Krebs. Optimierte Behandlungspläne im Zusammenhang mit der Verwendung von Protonen und Kohlenstoffionen erlauben eine individuelle Anpassung der Dosisverteilung an den Tumor. Dadurch wird die geplante Dosis jedoch sensibler gegenüber Fehlern und Unsicherheiten, z.B. in der Patientenpositionierung.

Ich beschäftige mich mit der Quantifizierung der hieraus entstehenden Unsicherheiten in der Dosisverteilung. Hierfür verwende und entwickele ich mathematische Methoden und implementiere diese für die Verwendung mit Behandlungsplanungssoftwares. Eine effiziente Abschätzung der Auswirkung verschiedener Unsicherheiten erlaubt dann die Bestimmung robusterer Behandlungspläne mit minimalen Nebenwirkungen für Patienten.

Kontakt: Pia Stammer

Danah Tonne

Porträtbild von Dr. Danah Tonne
Danah Tonne          (Foto: Christina Stivali)

...erforscht wie Geistes- und Kulturwissenschaften durch Methoden des Forschungsdatenmanagements bereichert werden können und ist stellvertretende Leiterin der Abteilung DEM.

In der Abteilung Data Exploitation Methods (DEM) forschen wir an neuen Methoden für Forschungsdatenmanagement und -analyse. Gemeinsam mit Fachwissenschaftlerinnen und Fachwissenschaftlern verschiedener Disziplinen werfen wir einen interdisziplinären Blick auf bisher nur schwer lösbare oder sogar unlösbare Forschungsfragen.

Insbesondere in Disziplinen, die bisher kaum digital arbeiten, beispielsweise die so genannten ‘kleinen Fächer’ der Geistes- und Kulturwissenschaften gibt es immenses, noch unentschlossenes Potential interdisziplinärer Forschung. Hier haben wir die Chance, Methoden und Arbeitsweisen der gesamten Disziplin zu bereichern. 

Im Rahmen des Sonderforschungsbereichs 980 ‘Episteme in Bewegung’, in dem ca. 50 Geisteswissenschaftlerinnen und Geisteswissenschaftler die Veränderung von Wissen über mehrere Jahrtausende untersuchen, leite ich das Informationsinfrastrukturprojekt ‘Bücher auf Reisen’. Als zentrale Aufgabe stellen wir Methoden und Werkzeuge - von der nachhaltigen Speicherung der Forschungsdaten über Annotation bis zur Visualisierung bestimmter Phänomene - für den gesamten Forschungsverbund bereit.

Kontakt: Dr. Danah Tonne
 

Alexandra Walter

Porträtbild von Alexandra Walter
Alexandra Walter

... forscht als Doktorandin an der Schnittstelle zwischen Data Science und Health Science.

Seit Sommer 2020 forsche ich als Doktorandin der interdisziplinären Graduiertenschule HIDSS4Health in der Schnittstelle zwischen Data Science und Health Science. Mein Fokus liegt auf der Verbesserung von automatischen Segmentierungsalgorithmen, die in der Tumortherapie zur Berechnung jedes individuellen Bestrahlungsplans benötigt werden.

Für dieses Projekt bin ich sowohl mit der Arbeitsgruppe Computational Science and Mathematical Methods (CSMM) des KIT als auch mit der Arbeitsgruppe Computational Patient Models des Deutschen Krebsforschungszentrums assoziiert. Meinen Master in Informatik habe ich an der Universität Tübingen absolviert.

Meine Forschungsinteressen sind Machinelles Lernen, Bildsegmentierung und Optimierung.

Kontakt: Alexandra Walter

Marie Weiel

... arbeitet als Helmholtz AI Consultant an Methoden der künstlichen Intelligenz für die Energieforschung.
Porträtbild von Marie Weiel
Marie Weiel

Nach meinem Physikstudium am KIT und meiner Promotion im Bereich Computational Biophysics am SCC bin ich als wissenschaftliche Mitarbeiterin in die Informatik gewechselt. Als Helmholtz AI Consultant arbeite ich gemeinsam mit meinen Kolleginnen und Kollegen an Methoden der künstlichen Intelligenz (KI) für das Energiesystem von morgen. KI ist ein wachsender Bestandteil in unserem alltäglichen Leben und übernimmt neben maßgeschneiderten Musikempfehlungen auf Spotify und personalisierten Shopping-Ads auf Instagram & Co. zunehmend wichtigere Aufgaben in unserer digitalen Gesellschaft. Die Anwendungsgebiete in der Energieforschung sind so vielfältig wie das Feld selbst und reichen von der Lastprognose für Energiesysteme über die Entwicklung neuer Materialien für z.B. Batterien bis hin zur automatisierten Steuerung von Industrieanlagen.

Das Consulting-Konzept von Helmholtz AI soll Wissenschaftlerinnen und Wissenschaftlern der Helmholtz-Gemeinschaft dazu befähigen, modernste KI-Methoden für ihre eigene Forschung zu nutzen. Als Helmholtz AI Consultants leisten wir dabei mit unserer Expertise Unterstützung in den Bereichen KI-Methoden und Software Engineering für konkrete Forschungsprojekte. Diese interdisziplinäre Arbeit ist sehr abwechslungsreich und bietet neben spannenden Forschungsfragen vielfältige Möglichkeiten, Neues zu lernen und Kontakte mit Forschenden über Fachgrenzen hinaus zu knüpfen.

Kontakt: Dr. Marie Weiel